Differential contributions of conformation extension and domain unfolding to properties of fibronectin nanotextiles.
نویسندگان
چکیده
Fibronectin (FN) textiles are built as nanometer-thick fabrics. When uniaxially loaded, these fabrics exhibit a distinct threshold between elastic and plastic deformation with increasing stretch. Fabric mechanics are modeled using an eight-chain network and two-state model, revealing that elastic properties of FN depend on conformational extension of the protein and that plastic deformation depends on domain unfolding. Our results suggest how the molecular architecture of a molecule can be exploited for designer mechanical properties of a bulk material.
منابع مشابه
Numerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملAssay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage.
In response to growing needs for quantitative biochemical and cellular assays that address whether the extracellular matrix (ECM) acts as a mechanochemical signal converter to co-regulate cellular mechanotransduction processes, a new assay is presented where plasma fibronectin fibers are manually deposited onto elastic sheets, while force-induced changes in protein conformation are monitored by...
متن کاملForced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations.
Titin, an important constituent of vertebrate muscles, is a protein of the order of a micrometer in length in the folded state. Atomic force microscopy and laser tweezer experiments have been used to stretch titin molecules to more than ten times their folded lengths. To explain the observed relation between force and extension, it has been suggested that the immunoglobulin and fibronectin doma...
متن کاملComputer modeling of force-induced titin domain unfolding.
Titin, a 1 micron long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties, and is largely composed of a PEVK region and beta-sandwich immunoglobulin (Ig) and fibronectin type III (FnIII) domains. The extensibility behavior of titin has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfol...
متن کاملIdentification and structural analysis of type I collagen sites in complex with fibronectin fragments.
Collagen and fibronectin are major components of vertebrate extracellular matrices. Their association and distribution control the development and properties of diverse tissues, but thus far no structural information has been available for the complex formed. Here, we report binding of a peptide, derived from the alpha(1) chain of type I collagen, to the gelatin-binding domain of human fibronec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 12 11 شماره
صفحات -
تاریخ انتشار 2012